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A rapidly growing instability is observed to develop between unequal-strength counter-
rotating vortex pairs. The vortex pairs are generated in a towing tank in the wakes of
wings with outboard triangular flaps. The vortices from the wing tip and the inboard
tip of the flap form the counter-rotating vortex pair on each side of the wing. The flow
fields are studied using flow visualization and particle image velocimetry. Both chord-
based and circulation-based Reynolds numbers are of O(105). The circulation strength
ratios of the flap- to tip-vortex pairs range from −0.4 to −0.7. The initial sinuous stage
of the instability of the weaker flap vortex has a wavelength of order one wing span
and becomes observable in about 15 wing spans downstream of the wing. The nearly
straight vortex filaments first form loops around the stronger wing-tip vortices. The
loops soon detach and form rings and move in the wake under self-induction. These
vortex rings can move to the other side of the wake. The subsequent development
of the instability makes the nearly quasi-steady and two-dimensional wakes unsteady
and three-dimensional over a distance of 50 to 100 wing spans. A rectangular wing
is also used to generate the classical wake vortex pair with the circulation ratio
of −1.0, which serves as a reference flow. This counter-rotating vortex pair, under
similar experimental conditions, takes over 200 spans to develop visible deformations.
Velocity, vorticity and enstrophy measurements in a fixed plane, in conjuction with the
flow observations, are used to quantify the behaviour of the vortex pairs. The vortices
in a pair initially orbit around their vorticity centroid, which takes the pair out of the
path of the wing. Once the three-dimensional interactions develop, two-dimensional
kinetic energy and enstrophy drop, and enstrophy dispersion radius increases sharply.
This rapid transformation of the wake into a highly three-dimensional one offers a
possible way of alleviating the hazard posed by the vortex wake of transport aircraft.

1. Introduction
The reviews of Rossow (1999) and Spalart (1998) highlight the technological

importance and the difficulties in understanding and controlling the behaviour of the
vortex wake of a subsonic aircraft, which has direct bearing on the safety and the
economics of air transport. Similar issues also confront submarine designers whose
purpose is to achieve stealthiness. The wake evolves into counter-rotating vortex pairs
far downstream of the aircraft. The instability of this equal-strength counter-rotating
vortex pair has been studied extensively during the past few decades. It has been
observed (Scorer & Davenport 1970) that the vortex wake does not decay by viscous
diffusion, but instead develops a sinuous instability that leads to the formation of
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vortex rings. From such observations, Crow (1970) constructed his classical linear
stability model, which describes the initial behaviour of an equal-strength counter-
rotating vortex pair. The most unstable wavelength from these calculations compares
favourably with that observed in actual trailing vortex wakes. Further research has
been conducted to better understand the subsequent nonlinear behaviour of these
vortex pairs. Melander & Hussain (1989), Saffman (1990), Shelley, Merion & Orszag
(1993), Kida & Takaoka (1994), and others have demonstrated the processes that
cause the anti-parallel vortices to reconnect and form vortex rings.

Crow’s linear theory was extended to include arbitrary-strength vortex pairs. Using
an asymptotic formulation that retains linear local self-induction and nonlinear poten-
tial vortex interactions, but excludes other nonlinearities, Klein, Majda & Damodaran
(1995) have shown that unequal-strength counter-rotating vortex pairs are unstable
regardless of the value of Γ , where Γ is the ratio of the strength of the weaker vortex
to the stronger and is less than zero for counter-rotating vortex pairs. Additionally,
the most unstable wavelength of the vortex pair is seen to decrease as Γ ↑ 0. Klein et
al . (1995) also investigated the finite-amplitude behaviour of counter-rotating vortex
pairs and demonstrated that there is finite-time collapse between the vortices, that
is the anti-parallel vortices make contact with one another in finite time. Their cal-
culations showed that for unequal-strength pairs, the weaker vortex filament wraps
around the stronger one, forming vortex loops. In an earlier work, Klein & Majda
(1993) developed a more general asymptotic formulation that is able to explain the
generation of further nonlinearities. Crow’s linear stability analysis for a pair has
been extended to multiple pairs, modelling the vortex wake of an aircraft with the
purpose of exploring ways to hasten the destruction of the vortices (Crouch 1997;
Rennich & Lele 1999; Fabre & Jacquin 2000; Fabre, Jacquin & Loof 2002).

There are only a few observations of an instability between unequal-strength
counter-rotating wake vortices. One of the earlier observations of a similar type of
instability is found in flow visualization photographs taken of a Boeing 747 (B-747)
wake (Corsiglia & Dunham 1976). During these flight tests, smoke was injected into
the counter-rotating vortex pairs that formed from the inboard flaps. After the B-747
passes overhead, a distinct sinuous instability is seen to develop along two of the
vortices. The wavelength of the instability appears to be on the order of one wing
span. Leonard (1974) later modelled this B-747 wake with a three-dimensional, time-
dependent, inviscid calculation and obtained the results in figure 18 of Corsiglia &
Dunham (1976). Through private communication with Dr Leonard, we learned that
the counter-rotating inboard and outboard flap vortices have a circulation strength
ratio of Γ = −0.34. It can be seen in figure 18 of Corsiglia & Dunham (1976)
that the inboard flap vortex rapidly develops a sinuous instability, which has a
wavelength about equal to the initial separation distance between the tip vortices. At
larger downstream distances, the counter-rotating inboard and outboard flap vortices
interact in such a manner that the weaker inboard flap vortex wraps around the
outboard flap vortex, forming what appears to be several vortex loops.

Over the past few years, Quackenbush, Bilanin & McKillip (1996), Quackenbush
et al. (1997, 1998) and Quackenbush, Bilanin & Carpenter (1999) have studied the
interaction of unequal-strength counter-rotating vortex pairs in an effort to alleviate
the sailplane wakes of military submarines. The goal of their study is to use shape
memory alloys (SMA) to actively perturb the vortices and to hasten the breakup of
the wake. They have modelled the flow of two counter-rotating vortex pairs with a
Lagrangian-based vortex method. For the wake modelled in figure 4 of Quackenbush
et al. (1997), Γ = −0.58 and the initial distance between the inboard and outboard
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vortices is 0.275b, where b is the distance between the tip vortices. The vortex wake
is perturbed at three wavelengths: 2b, 4b, and 8b. The 8b perturbation is intended to
excite the Crow instability between the oppositely signed tip vortices. However, the
results of Quackenbush et al. (1997) demonstrate that the 2b perturbation quickly
becomes the most rapidly growing mode. The authors report that the time scales of
the 2b mode are 3–10 times faster than that of the 8b Crow-like mode. At larger
times, vortex loops form as the weaker inboard vortices wrap around the outboard
vortices. Figure 4(d ) of Quackenbush et al. (1997) shows that the loops seem to be
separating from the outboard vortices and transitioning to vortex rings.

To study the stability properties of unequal-strength counter-rotating vortex pairs,
flow visualization experiments were done in the wake of a wing with outboard
triangular flaps (Ortega & Savaş 2001). These experiments revealed that the two
counter-rotating flap/tip vortex pairs undergo a sinuous instability within 15–20 spans
downstream of the wing. Qualitatively, the instability resembles the nonlinear filament
analysis in Klein et al . (1995) and the numerical simulations in Quackenbush et al.
(1997). Following the observations of this rapidly growing instability, we conducted
further research (Bristol 2000; Ortega 2001) to quantify its behaviour and to provide
an explanation for this instability mechanism. This paper presents results from this
research. Following a description of the flow setup in § 2, the results of a refined
flow visualization experiment are discussed in § 3. Additionally, flow visualization
measurements are done in the wake of a rectangular wing to demonstrate the marked
difference this instability makes in the vortex wake. Features of the instability, such as
its development and nonlinear evolution, are presented. Section 4 discusses the particle
image velocimetry (PIV) measurements. The data from these experiments provide a
quantitative assessment of the circulation strengths of the vortices, their kinetic energy,
internal structure, and trajectories up to several hundred spans downstream from the
wings. In § 5, the instability wavelengths are measured from the flow visualization
data and the vortex sizes, separation distances, and relative strengths from the PIV
data.

One of the motivations behind this work is to explore possible ways of controlling
the behaviour of the vortex wake of an aircraft. The implications of this work for
controlling vortex wakes are discussed in Ortega, Bristol & Savaş (2002). Another
companion paper (Bristol et al. 2002a) compares the measurements in § 5 with the
most unstable wavelengths from two linear stability analyses: one that computes the
stability properties of a single unequal-strength counter-rotating vortex pair and an-
other that computes the stability properties of two unequal-strength counter-rotating
vortex pairs. Additionally, CFD simulations are presented to highlight important
features, such as the nonlinear dynamics and full-wake velocity and vorticity data,
which could not be measured in the experiments.

2. Flow setup
A modular wing is used in this experiment to generate the wake vortices (figure 1).

Depending on the type of vortex wake desired, different tabs and flaps can be
attached to the trailing edge of the wing. The wing and the trailing edge tabs and
flaps are made of 3.2 mm thick stainless steel sheet that is rolled to a camber radius
of 17 cm. The leading edge of the wing is tapered for the first 20 mm and the
trailing-edge tabs and flaps over the last 10 mm. On the underside of the wing are
four 1.1 mm wide× 1.1 mm deep channels, which house dye injection tubing. For this
experiment, three wing configurations are used: a rectangular-shaped wing, which has
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Figure 1. Planform and side view of the three wings used in the experiment. For the rectangular
wing (a), only the tubes going to the wing tips are installed. The right-handed coordinate system is
defined in (a).

a span, b, of 40.0 cm and a chord, c, of 6.67 cm (figure 1a); a second wing that has
outboard triangular flaps, which have a span of 0.25b and a chord of 0.5c (denoted
hereafter as 50%c TF, figure 1b); and a third wing that has outboard triangular flaps,
which have a span of 0.25b and a chord of 0.75c (denoted hereafter as 75%c TF,
figure 1c). The equal-strength counter-rotating vortex pair from the rectangular wing
serves as a baseline case, against which the vortex wakes of the triangular-flapped
wings are compared. In the discussions to follow, the strength of the tip vortices is
Γt and that of the flap vortices is Γf . The right-handed coordinate system (x, y, z) is
defined in figure 1(a), where the velocity vector is u = (u, v, w).

The flow visualization and PIV measurements are obtained in a towing tank, which
measures 70 m× 2.4 m and has a nominal water depth of 1.5 m (Chen, Jacob & Savaş
1999). In the middle of the tank is the test section, which has glass windows that give
an underwater view of the tank. A lightweight aluminium carriage is used to tow the
wings down the length of the tank at high speeds. The carriage is driven by a 5-hp
computer-controlled motor through a steel cable, capable of towing speeds, Uo, up
to 8 m s−1. Most of the experiments described here are done at Uo = 5 m s−1, which
results in a chord-based Reynolds number, Rec = cUo/ν, of about 3.3 × 105, where
ν = 0.01 cm2 s−1 is used for the kinematic viscosity of water. During an experiment,
the carriage begins its motion at the upstream end of the tank and continues until
it reaches the far end. The reason for doing this is that previous experiments have
demonstrated that stopping the carriage causes the wake vortices to prematurely
burst. This bursting phenomenon slowly propagates downstream along the vortices.
Therefore, if the carriage is stopped too close to the test section, the data collected
there soon become contaminated by this effect.

The wings are attached to the carriage by a streamlined strut, which places them
approximately 0.5 m beneath the water surface. Before conducting the experiments,
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Run Uo α 1
2
(|Γor(0)|+ |Γol(0)|) Γol Γ or KE

PIV (cm s−1) (deg.) (cm2 s−1) (cm2 s−1) (cm2 s−1) ReΓ (cm4 s−2) r̄rmax/b r̄lmax/b

10 500 3 854 −869 883 85 400 258 000 0.064 0.061
11 500 3 856 −866 868 85 600 255 000 0.064 0.061
13 500 3 821 −851 868 82 100 250 000 0.064 0.060
23 500 3 829 −896 917 82 900 267 000 0.063 0.061

15 500 0 374 −359 361 37 400 48 300 0.090 0.103
16 500 0 383 −346 365 38 300 45 400 0.090 0.100
17 500 0 381 −349 361 38 100 45 900 0.090 0.112

18 500 2 721 −727 735 72 100 189 000 0.060 0.063
19 500 2 725 −723 743 72 500 191 000 0.061 0.061
20 500 2 760 −721 733 76 000 191 000 0.058 0.060

21 300 2 388 −364 362 38 800 50 000 0.058 0.060

Table 1. PIV run parameters for the rectangular wing: Uo, wing speed; α, angle of attack. Measured
quantities: 1

2
(|Γol(0)|+|Γor(0)|), initial total circulation; Γol , average left vortex circulation; Γor , average

right vortex circulation; ReΓ , circulation-based Reynolds number of the wake; KE , average kinetic
energy of the wake; r̄rmax/b, average core size of the right vortex; r̄lmax/b, average core size for the
left vortex.

flow visualization of the strut wake is performed using particle streaks in a CW laser
light sheet to confirm that the strut is not yawed, an effect that could invalidate the
subsequent measurements. Slight adjustments are made to the strut’s yaw angle so
that its wake is as thin as possible. In order to adjust the wing’s angle of attack,
α, the strut can pivot on its mounting bracket, allowing the angle of attack to vary
between ∓12◦ in 1◦ increments. The experiments presented here are performed at
low angles of attack, α = 0, 2◦, 3◦ for the rectangular wing and α = −1◦, 0, 2◦ for the
flapped wings (tables 1 and 2). Close observations over the wing surfaces showed that
at high angles (α > 5◦) of attack and lower tow speeds, the flow over the top surface
shows signs of separation. Those conditions prone to flow separation are precluded,
hence the low angles of attack. No direct observations are made to determine if the
boundary layers on the wing remained laminar or become turbulent.

3. Flow visualization
The trailing vortices are visualized by releasing diluted fluorescent sodium salt dye

(Sigma Chemical Company, No. F-6377) into the vortex cores. The container that
supplies dye to the flap vortices has a dye concentration of 2 : 100 by weight and the
container that supplies dye to the tip vortices has a dye concentration of 1 : 100 by
weight. Both of these containers are open to the atmosphere, such that the dye is
drawn into the vortices by the low pressure that exists in the vortex cores.

The test section of the towing tank is illuminated with blue light from several slide
projectors (figure 2). The blue light is generated by placing a blue low-pass glass filter
in the slide container of each projector. The projectors are located approximately 2 m
from the viewing windows of the test section. The motion of the dye is recorded with
three video cameras: two orthogonal views (y, z) and an oblique view. The overhead,
orthogonal view (z) is provided by a Sony XC7500C camera with an 8 mm lens. By
suspending the camera about 2 m above the water surface, the field of view at the
wing depth is approximately 170 cm × 130 cm. The orthogonal, side view (y) of the
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Figure 2. Schematic of the setup used for the PIV and flow visualization measurements.
For clarity, not all of the projectors are shown.

vortex wake is recorded by placing a Texas Instruments camera (Multicam CCD)
with an 8 mm lens against the glass panes in the test section. The camera is positioned
at the same downstream location as the overhead Sony camera. The field of view
from the Texas Instruments camera is approximately 103 cm × 77 cm at the wing
centreline. Another Sony XC7500C camera gives an oblique, downstream view of the
test section. This camera is housed in a waterproof cylindrical shell and is suspended
in the test section such that its 8 mm lens penetrates the water surface to a depth
of about 10 cm. The two orthogonal cameras are calibrated by recording a ruler at
several depths and lateral locations in the test section. This information is later used
to extract the instability wavelengths and other flow features that are recorded in the
dye visualization images. A total of 24 flow visualization runs are made by varying
the wing towing speed, angle of attack, and type of wing. The runs are spaced by
approximately 20 minutes, allowing the water in the tank to become quiescent for the
next run.

Since the wakes of the triangular-flapped wings are highly three-dimensional,
volumetric flow visualization is a vital element in understanding the vortex dynamics
in the trailing wakes. The observations made with this technique provide much
more insight into the flow physics than the two-dimensional PIV measurements.
Furthermore, without the flow visualization data, the PIV data would have been
difficult, if not impossible, to interpret correctly at times. In the following discussions,
the fluorescent dye is taken to be a marker of the vorticity in the flap and tip vortices.
However, the dye does not mark all of the vorticity in the wake. The reason for this
is that the dye is released at only four distinct points and not along the entire vortex
sheet generated by the wings. Since the molecular diffusivity of water is much smaller
than its momentum diffusivity, the dye remains as a partial marker of the vortex
sheet, which rapidly rolls up into vortices. Hence, in the rolled-up wake, the dye marks
vorticity, but not all vorticity is marked by dye. At larger downstream distances, only
vortex structures that correlate well with themselves both spatially and temporally
are identified and discussed. Therefore, if a large dispersal of dye is observed in the
wake, no attempt is made to relate this to a large dispersal of vorticity. The PIV
measurements will later be employed to quantify the spread of vorticity in the flows.
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3.1. Rectangular wing

The flow visualization data of the rectangular wing’s wake (Uo = 500 cm s−1, α = 3◦)
are shown in figure 3. At x/b = 0, the wing is in the centre of the test section.
The downstream distance, x, is found by the transformation x = Uot, where t is the
time since the wing passed through the light sheet. The black, nearly vertical lines in
these top-view images are shadows cast by two of the steel beams that support the
test section window. After the two counter-rotating tip vortices form, they descend
rather gently in the test section. While not exactly parallel, the vortices display only
a minimal amount of distortion, which is evident in the slight undulations visible in
the side-view images (not shown here). Additionally, ‘bulges’ in the vortex core sizes
are observed to travel downstream (to the left) along the length of the vortices at
a speed of order 0.5 m s−1. The velocity of these bulges is not constant in time, but
varies periodically as they make their way through the test section. The still top-view
images do not clearly demonstrate these observations of the bugles. It is not until the
vortices approach the bottom of the tank that they begin to exhibit some signs of the
long-wavelength Crow instability (x/b = 144 and 186). At later times, the vortices
interact strongly with the bottom of the tank and break apart.

3.2. Triangular-flapped wings

Unlike the wake of the rectangular wing, the wake of the triangular-flapped wings
becomes highly three-dimensional as a sinuous instability rapidly develops between the
unequal-strength counter-rotating flap and tip vortices. This instability is consistently
observed for all towing speeds and angles of attack. The results from the flow
visualization experiments for the two triangular-flapped wings (figures 1b and 1c) are
shown in figures 4–6 and figures 8–10, respectively.

3.2.1. Observations for the 50%c TF wing: Run FV 1, α = 2◦, Uo = 500 cm s−1

Figures 4–6 show the flow visualization (FV) images of the downstream, side,
and top views, respectively, at several downstream locations for the 50%c TF wing
(figure 1b). For this particular run, the angle of attack is 2◦ and the towing speed
is 500 cm s−1. The large bright spot in the side view images (figure 5) is due to the
reflection of one of the projectors. The wing and four dye trails are visible in the
three views at x/b = 0. After their initial formation, the flap and tip vortex pairs
orbit outwardly on either side of the wing about their common vorticity centroids.
PIV measurements in the wake of this wing at the same conditions reveal that
Γf/Γt = −0.37. At approximately 15 spans downstream or 3π/4 radians through
the orbit period, instability waves are observed to rapidly develop on the weaker
flap vortices. The wavelength of the instability is on the order of one wing span or
four times the separation distance between the flap and tip vortices. This wavelength
is shorter than that of the Crow instability between equal-strength counter-rotating
vortices. The instability waves on the left and right flap vortices grow independently
of one another. From the top-view images in figure 6, the distortion due to the surface
waves is visible at x/b = 18 and 21. The disturbance amplitudes quickly grow such
that the flap and tip vortices on the left-hand side make contact at about 20 spans
and those on the right-hand side at 25 spans. During the growth of the instability,
the perturbations on the flap vortices remain at a relatively fixed orientation with
respect to the rotating reference frame of the flap and tip vortices. Consequently, the
use of the unit x/b is not quite exact, since it emphasizes the fact that the vortices
were generated at one point in time. Perhaps a better characteristic time is the orbital
period of the vortex pairs or the descent time of the vortex system. For the remainder
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Figure 3. Top view of the rectangular wing’s wake (Run FV 16, Uo = 500 cm s−1, α = 3.0◦).
Note that the frames are not evenly spaced in x/b.
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of this paper, the unit x/b will be used in describing the experimental observations.
However, in Bristol et al . (2002a), which describes the linear stability characteristics
and CFD simulations of two- and four-vortex systems, the orbital period of the vortex
pairs will be employed as the characteristic time scale.

As the instability progresses, the flap vortices wrap around the tip vortices, forming
Ω-shaped loops that have a structure similar to figures 13 and 16 in Klein et al . (1995).
The spiral ‘feet’ of these loops behave like vortex helices around the tip vortices and
advect inward toward each other. This extends the loops in the vertical direction, as
is evident in the side-view images. By 45 spans, the loops are oriented vertically and
are flung across the centre of the wake. As the loops approach the wing centreline,
they pinch off into vortex rings, occasionally colliding with rings from the opposite
side of the wing. The vortex rings that reach the opposite side of the wake collide
with the remnants of the tip vortices. As the rings approach the tip vortices, their
diameters increase roughly by a factor of two, resulting in an ‘m’-like structure in
the wake, which is visible in the top view at x/b = 103. By 175 spans, the dye is
completely dispersed in the test section and no coherent dye patterns are visible in
the wake. The downstream view and side view do, however, indicate the presence of
downwash at this downstream location.

The spiral ‘feet’ of the ‘Ω’-loops at about x/b = 30 in figures 4–6 show intense
dye patterns which are reminiscent of bursting. The resolution of neither the flow
visualizations nor the velocity measurements presented later are sufficient to make
definitive statements about the nature of these features. Based on the observations of
the dye filaments, however, a qualitative description may be presented. As the flap
vortex wraps around the tip vortex, forming the Ω-loops, the spiral feet of an Ω-loop
may be thought of as two vortex bushings which are moving toward each other.
Their induced flow fields are also moving parcels of fluid towards each other, at even
higher velocities. It is likely that the collision of these oppositely moving masses of
fluids is causing the bursting at the feet of the Ω-loops immediately before the vortex
reconnection that results in detached vortex rings. The internal dynamics of a vortex
bushing will add further complexity to this event. For example, the bushings will
tend to form toroidal spiral vortex sheets that will further spread the dye radially.
The axial flow induced by these bushings around the core of the stronger tip vortex,
however, is not immediately obvious.

To illustrate the vortex-connection and re-connection processes that are occurring
in the wake described above, a useful exercise is to make a filament cartoon of
the vortices and trace through the vortex interactions (figure 7). Let the flap and
tip vortices have strengths of −Γa and Γa + Γa + Γb, respectively. As will become
evident shortly, these circulation strengths are chosen to make the following analysis
more tractable and are useful when Γf/Γt > −0.5. Initially, the flap and tip vortices
are parallel as shown figure 7(a). As the vortices orbit about one another, the flap
filaments develop finite-amplitude perturbations (figure 7b), resulting in the contact
of the flap and tip vortices (figure 7c). Neglecting the details of the vortex connection
process, the flap filaments join with the Γa filament of the tip vortex, forming vortex
rings (figure 7d ). Assuming that there are no collisions in the centre of the wake
(the vortex rings are staggered for the purpose of this illustration), the vortex rings
travel to the opposite side of the wake (figure 7e) and there interact with the tip
vortices. To keep the circulation constant along the length of the filaments, the upper
halves of the vortex rings connect with the remaining Γa filament of the tip vortex,
yielding the ‘m’-like structure observed in the flow visualization images (figure 7f ).
Meanwhile, the remaining halves of the vortex rings form secondary vortex loops
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Figure 4. Downstream view of the triangular-flapped wing (Run FV 1, 50%c TF, Uo = 500 cm s−1,
α = 2.0◦). Note that the frames are not evenly spaced in x/b.
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Figure 5. Side view of the triangular-flapped wing (Run FV 1, 50%c TF, Uo = 500 cm s−1,
α = 2.0◦). Note that the frames are not evenly spaced in x/b.
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Figure 6. Top view of the triangular-flapped wing (Run FV 1, 50%c TF, Uo = 500 cm s−1,
α = 2.0◦). Note that the frames are not evenly spaced in x/b.
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Figure 7. A filament model of the evolution of the vortex interactions that are observed in the
wake of the 50%c TF wing at α = 2.0◦.

with the Γa portion of the tip filament. Due to the large dispersal of dye, it is
difficult to clearly observe the existence of secondary loops in the flow visualization
images.

3.2.2. Observations for the 50%c TF wing: Run FV 3, α = −1◦, Uo = 500 cm s−1

The flow visualization pictures for this run are shown in figures 8–10. By decreasing
the angle of attack to −1◦, the vortex wake exhibits a somewhat different behaviour
than that in Run FV 1. The reason for this is that the flap vortex is stronger than
the tip vortex. PIV measurements show that Γf/Γt = −0.55 at these conditions.
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Additionally, this angle of attack causes the overall vortex strengths to be weaker so
that the pressure in the vortex cores is higher than that of the 2◦ runs. Consequently,
the vortices draw less dye into their cores, causing the dye trails in figures 8–10 to
appear fainter than those for Run FV 1. By approximately 20 spans or π/2 radians
through the orbit period, a long-wavelength instability, which is slightly larger than
that in Run FV 1, appears on the flap vortices. As this instability grows, the tip vortices
also exhibit perturbations of the same wavelength, though their amplitude is smaller
than the disturbances on the flap vortices (top view, x/b = 23–35). From the side-
view images at 19–26 spans, a higher-wavenumber instability can be seen on the flap
vortices. The wavelength of this instability is on the order of the flap/tip separation
distance. This instability is repeatedly observed in the −1◦ runs for triangular-flapped
wings at both Uo = 300 and 500 cm s−1. The source of this instability is uncertain,
but, given its short wavelength, it could be caused by an ‘elliptic’ mode (Widnall,
Bliss & Tsai 1974; Leweke & Williamson 1998; Bristol 2000; Bristol, Ortega & Savaş
2002b). However, this instability does not appear to have a significant impact on the
vortex wake. By 31 spans or 3π/4 radians through the orbit period, the left-hand
side flap and tip vortices make contact with one another. After a few more spans,
the right-hand side pair does the same. As the vortices in either of the pairs make
contact, the stronger tip vortices ‘reach out’ to the flap vortices (side view, x/b = 35).
The resulting structure of the flap and tip vortices bears a resemblance to figure 13
of Klein et al . (1995), which is based on a nonlinear filament calculation for a single
vortex pair with Γ = −0.5.

The Ω-loops that develop from the flap vortices are slightly larger than those of
Run FV 1 due to the longer wavelength of the instability (top view, x/b = 39). As the
loops’ ‘feet’ spiral around the tip vortices, they advect inward towards one another,
which, in turn, extends the loops vertically. While the flap vortices wrap around the
tip vortices, the tip vortices exhibit a helical structure as indicated in figure 10 at
x/b = 50. Eventually, the loops pinch off into vortex rings, which travel upwards
to the water surface. Unlike the 2◦ case, there is little exchange of dye across the
wing centreline. By 125 spans, there are no coherent dye features visible in the wake.
Additionally, the side and downstream views show that there is no evident downwash
in the test section. This is not to say that the wake has been completely dispersed,
since it is probable that the dye is too dispersed to indicate any salient features in the
wake. The PIV measurements presented below provide a quantitative analysis of the
behaviour of the wake at these large downstream distances.

The qualitative behaviour of the instability does not appear to depend strongly on
the size of the triangular flaps. Consequently, the flow visualization runs done with
the 75%c TF wing are similar to those of the 50%c TF wing. For all of the flow
visualizations runs with the triangular-flapped wings, the instability initially occurs on
the weaker flap vortices and has a wavelength that is on the order of one wing span.
The perturbation amplitudes on the flap vortices grow rapidly, such that the flap and
tip vortices eventually make contact with one another. This observation is consistent
with the conclusions of Klein et al . (1995), which demonstrated that counter-rotating
vortex pairs exhibit a finite-time collapse.

The flow visualization data provide an excellent qualitative description of the in-
stability that arises between the unequal-strength counter-rotating vortex pairs. With
these data, the highly complex, three-dimensional vortex interactions are easily identi-
fied as the instability becomes nonlinear. The one drawback of the flow visualization
is that it does not lend itself to other quantitative measurements, such as the cir-
culation strengths of the vortices, their kinetic energy, and internal structure. When
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Figure 8. Downstream view of the triangular-flapped wing (Run FV 3, 50%c TF, Uo = 500 cm s−1,
α = −1.0◦). Note that the frames are not evenly spaced in x/b.
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Figure 9. Side view of the triangular-flapped wing (Run FV 3, 50%c TF, Uo = 500 cm s−1,
α = −1.0◦). Note that the frames are not evenly spaced in x/b.
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Figure 10. Top view of the triangular-flapped wing (Run FV 3, 50%c TF, Uo = 500 cm s−1,
α = −1.0◦). Note that the frames are not evenly spaced in x/b.
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the dye becomes dispersed, it is also difficult to determine what is occurring in the
vortex wake. For these reasons, the two-dimensional PIV measurements discussed in
the following section are carried out to quantify the behaviour of the vortex wake at
large downstream distances.

4. PIV measurements
Velocity and velocity-gradient measurements of the vortex wakes are made with a

particle imaging velocimetry (PIV) system, a schematic of which is shown in figure 2.
A Kodak Megaplus ES 1.0 (1008 pixels × 1018 pixels) digital camera is placed 4.5 m
upstream of a 1 cm thick light sheet generated by a dual-head pulsed YAG laser
(New Wave Gemini). To produce the light sheet, the laser beams are passed through
a cylindrical lens. With a 50 mm lens attached to this camera, the field of view at the
light sheet is approximately 60 cm×60 cm. The camera acquires image pairs at 15 Hz,
where the images within each pair are separated by from 6 ms to 12 ms, depending on
the wing towing speed. Because the wakes of the triangular-flapped wings spread out
so much, only the right half of the triangular-flapped wing is imaged. The towing tank
test section was seeded with 40 micron silver-coated spheres (Potters Industries) that
have a specific gravity of 0.9. The PIV camera views the particles through a periscope
that places the camera approximately 120 cm beneath the water surface. To minimize
its influence on the wake vortices, the periscope is suspended only 15 cm away from
the tank’s sidewall, causing a 16◦ skew in the images. The images from the camera
are transferred to a computer via a digital frame grabber (Matrox Genesis-LC).

A total of 11 runs with the rectangular wing and 24 runs with the triangular-
flapped wings are made. The time between sequential runs is approximately twenty
minutes. Because the particles tend to become dispersed after several runs, the test
section of the tank is seeded every three to four hours during the data acquisition
process. Additionally, several PIV images are recorded of the background flow in
the test section prior to each run. With these images, the background velocity fluc-
tuations are determined to be of order 1 cm s−1 and have length scales of order
20 cm.

4.1. Data processing

The PIV images are first digitally corrected to remove the skew that results from the
lateral offset of the camera/periscope assembly. Because of this correction process,
the resulting images have a size of 1086 pixels × 1018 pixels. Another consequence
of the camera’s distance from the light sheet is that the particle images, which are
exposed for only 6 ns, appear to be very dim. To improve their quality, the images
are digitally enhanced (Ortega 2001).

The PIV processing is done with an adaptive Lagrangian parcel tracking (aLPT)
(Sholl & Savaş 1998; Tsuei & Savaş 2001) algorithm. This algorithm utilizes inter-
rogation windows that are advected and deformed according to the local velocity
and velocity-gradient fields, improving the quality of the data in regions of strong
deformation. The outputs of aLPT are the two-dimensional velocity vector field, ui,
and its gradient tensor, ∂ui/∂xj , which is computed spectrally. The axial vorticity, ω,
is determined from the velocity-gradient tensor. For this experiment, processing of the
1086 pixel× 1018 pixel images results in data fields that are 66 step× 62 step, giving a
resolution of about 1 cm/step with a 50% overlap between successive steps. The time
separation between the data fields is 66 ms (15 Hz) such that time scales of the flow
shorter than 133 ms are not accessible.
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To provide some measure of the accuracy of aLPT, synthetically generated PIV
image pairs of single Lamb–Oseen vortices are processed. For this purpose, four
vortex sizes and two vortex strengths are chosen, which are comparable to the those
studied experimentally. The normalized standard deviations between the analytical
input and the processed output velocity and vorticity fields are calculated for each
synthetic PIV image pair by summing the square of the difference between the input
and the output fields at each PIV interrogation window. The normalized standard
deviations are determined as 5% for azimuthal velocity fields and 3% for vorticity
fields. This value can be taken as an estimate of the experimental accuracy. However,
it should be noted that the actual data contain out-of-plane motion, meaning that the
axial velocity in the vortex wake carries particles through the light sheet. This loss of
particles may introduce additional errors, which have not been accounted for in the
above tests. Furthermore, the above analyses are performed on an isolated Lamb–
Oseen vortex, while the experimental data consist of both one and two vortices that
may not have the exact structure of a Lamb–Oseen vortex. The presence of another
vortex may result in additional errors in aLPT. Another effect of the aLPT processing
is that the algorithm underestimates the peak vorticity and overestimates the size of
the vortex, due to its global filter settings chosen for processing, making it necessary
to correct for this artificial increase in the vortex’s dimensions. Further details on
error analysis may be found in Bristol (2000) and Ortega (2001).

The flow field statistics for a given run are calculated for the entire field of view, as
well as for the individual vortices. Post-processing is done using several codes written
in IDL (Interactive Data Language of Research Systems, Inc.). Several integral
quantities are used to characterize the whole wake, half-wake, or an individual vortex
embedded in the wake. They are computed beginning with the first frame in which the
vortices have formed. This takes one or two frames after the wing leaves the camera
view. The analysis continues until the last frame in the run, or until the vortices leave
the camera’s field of view, or until a vortex can no longer be identified clearly. The
two-dimensional output fields of aLPT (y, z) are cropped by 1 step along all four
edges to remove the spurious values that exists along the border of the measurement
domain. The integration is done over the whole data field when the whole wake or
half-wake is imaged and the interest is in the total data field. When describing an
individual vortex, the integration is done over the largest circular area that can be
centred at the vorticity peak of that vortex without overlapping other vortices in the
vicinity. The total circulation Γtot is obtained from

Γtot =

∫
ω dA, (4.1)

which is also used to determine the circulation-based Reynolds number, ReΓ = Γtot/ν
for the wakes. The position of the vorticity centroid, yΓ = (yΓ , zΓ ), is obtained from
from

yΓ =
1

Γtot

∫
yω dA. (4.2)

Note that yΓ → ∞ when Γtot → 0. To avoid the difficulties in describing the vorticity
distribution when vorticity is not all of the same sign, we will use enstrophy ω2. The
total enstrophy EN is determined from

EN =

∫
ω2 dA (4.3)



54 J. M. Ortega, R. L. Bristol and Ö. Savaş

and the position of the enstrophy centroid, yEN = (yEN, zEN), from

yEN =
1

EN

∫
yω2 dA. (4.4)

For an equi-strength counter-rotating vortex pair, the enstrophy centroid is at the
mid-point of the vortices while the vorticity centroid is at infinity. A measure of the
dispersion of the vorticity field is desired. The dispersion radius of vorticity rΓ , which
is defined as

r2
Γ =

1

Γtot

∫
|y − yΓ |2ω dA, (4.5)

may be considered an obvious candidate (Lamb 1938; Batchelor 1967). This measure
works well when vorticity does not change sign over the region of interest. It causes
difficulties, however, when vorticity changes sign. The dispersion radius rΓ can become
imaginary for |Γtot| < ∫ |ω| dA, and becomes undefined when Γtot → 0. To avoid these
difficulties, we use an enstrophy dispersion radius rEN defined as

r2
EN =

1

EN

∫
|y − yEN |2ω2 dA. (4.6)

The enstrophy centroid defined in equation (4.4) is used to obtain finite values
even when looking at a whole vortex wake where Γtot → 0 and yΓ →∞. Note that

rΓ = rEN for a Rankine vortex and rΓ =
√

2rEN for a Lamb–Oseen vortex. A pseudo-
two-dimensional kinetic energy of the data field is calculated as

KE =
1

2

∫
|v|2 dA, (4.7)

where v = (v, w). When vortices are aligned with the x-axis before instabilities amplify,
the velocity field is nearly planar (u ≈ (0, v, w)), hence, equation (4.7) represents the
true kinetic energy. KE is used as an indicator of the abrupt change from a nominally
two-dimensional behaviour to a three-dimensional one. It does not capture the total
kinetic energy of the flow field since substantial kinetic energy lies at large distances
from the vortex cores.

In addition to calculating flow statistics for the entire wake, analyses are performed
on the individual vortices. The vortex structure is obtained by fitting the circulation
distribution of a Lamb–Oseen vortex,

Γ (r) = Γo(1− e−r
2/σ2

), (4.8)

to the circulation data of the vortices, where the radial coordinate r is measured from
the vortex centroid. Note that σ = rΓ . This fitting process is similar to that employed
in figures 10 and 11 of Chen et al . (1999) and the fits have comparable scatter. With
Γo and σ determined from the circulation fit, the vortices’ core sizes can be found
from

rmax = 1.12σ, (4.9)

which is the radial location of maximum azimuthal velocity. The maximum azimuthal
velocity is found by substituting rmax from equation (4.9) and Γo and σ from the fit
of equation (4.8) into the azimuthal velocity distribution

uθ(r) =
Γo

2πr
(1− e−r

2/σ2

). (4.10)
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The peak value of vorticity can also be found from Γo and σ by evaluating

ω(r) =
Γo

πσ2
e−r

2/σ2

(4.11)

at r = 0. The advection velocity, vc = (vc, wc), of a vortex is calculated by weighting
the velocity field with the vorticity field as in Bilanin, Teske & Williamson (1977) and
Marcus (1990) to give

vc =
1

Γo

∫
vωdA. (4.12)

Additionally, the kinetic energy of the vortices are obtained by employing equa-
tion (4.7) for the flap and tip vortices.

For the triangular-flapped wing, analysis of the flap and tip vortices continues until
the instability gives rise to three-dimensional effects in the measurement plane. This
criterion is somewhat subjective, because it depends on where the light sheet cuts the
vortex wake. Typically, the flap and tip vortices are examined until there is a rapid
change in their core sizes or until they begin to merge with each other. After this
point, calculations for the individual vortices cease and the analysis continues only
for those values computed over the entire field of view. For the rectangular wing, the
vortices are examined over the entire run.

The integral quantities determined in equations (4.1–4.12) refer to instantaneous
values in data fields. The average of an instantaneous integral value is calculated over
a run and identified with an overbar ( ). Thus, Γ (t) is the circulation at a PIV data
field while Γ is the time average of Γ (t) over a whole run or a part of a run when
referring to an individual vortex. The subscripts t and f are used to identify the wing
tip and the inboard tip of a triangular flap, respectively (figure 1). Also, the subscripts
l and r are used to identify the left (port) and the right (starboard) side of the wings,
respectively.

4.2. Rectangular wing

The PIV measurements for the rectangular wing, which are summarized in table 1,
provide a comparison between the wake behaviour of a conventional wing and that
of the triangular-flapped wings. For the eleven runs that were conducted with the
rectangular wing, the measurements exhibit the highly two-dimensional steady nature
seen in the flow visualization experiments. Changing the wing speed or angle of attack
shifts the values of the measured quantities, but the general trends in the data remain
unchanged.

4.2.1. Vorticity contours and vortex trajectories

Vorticity contours at several downstream distances are shown in figure 11 for Run
PIV 11 in which ReΓ = 85 600. At x/b = 0, the tip vortices are rolling up from the
vortex sheet generated by the wing, giving them an elongated shape. The initial
separation distance between the left and right vorticity centroids is approximately 37
cm. The two counter-rotating vortices at the wing’s centreline are due to either the
boundary layer off the strut or corner vortices that form at the strut/wing junction.
By 41 spans, the vortices have long since completed their roll-up process and are
nearly circular in shape. Note that the left vortex is somewhat above the right vortex,
which is a consequence of a slight asymmetry in the wing or strut construction. In the
last two plots at x/b = 83 and 125, the vortices appear almost exactly as they do at
x/b = 41 spans; the only difference is that they have descended further in the tank.

The trajectories of the individual left and right wing-tip vortices, as well as that
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Figure 11. Vorticity contours at several downstream locations from the rectangular wing (Run PIV
11, Uo = 500 cm s−1, α = 3◦). The black contours indicate positive values of vorticity and grey
contours negative values. The same contour levels are used in each of the plots.

of the entire vortex wake, for Run 11 are shown in figure 12. The vorticity centroids
of the left and right vortices are determined using equation (4.2) and are shown in
figure 12(a). The enstrophy centroids of the left and right vortices as well as the whole
wake are determined using equation (4.4) and shown in figure 12(b). The integration
is taken over a rectangular area covering each vortex’s respective half, extending from
top to bottom and edge to centre of vorticity data such as those shown in figure 11.
The enstrophy centroid of the whole wake is found through the integration over
the enstrophy field of both vortices. The time histories of the enstrophy and vorticity
centroids are also shown: the vertical positions in figure 12(c) and horizontal in 12(d ).
The individual vortex trajectories look nearly the same, especially the vertical time
histories in figure 12(c) where five traces are plotted. Following the initial roll-up,
the tip vortices descend vertically at nearly a constant rate for about one wing span.
After about one wing span descent (about x/b = 110), the vortex trajectories seem to
show signs of the effect of the bottom of the tank. The deviation of the trajectories
from the fitted straight line in figure 12(c) at later times clearly shows that the descent
wake of the wake, however measured, is decreasing. The separation distance of the
vortices increases as seen in figure 12(d ) and the vertical descent rate slows down, a
clear indication that the affect of the image vortex system at tank bottom is coming
into play. The enstrophy centroid of the whole wake, however, remains vertical due



The instability of unequal-strength counter-rotating vortex pairs 57

–0.5

1.5

1.0

0.5

0
0 0.5

z
b

50

1.5

1.0

0.5

0 100

zEN

b

x/b

–0.5

1.5

1.0

0.5

0
0 0.5

0.5

0

–0.5

(a)

Left Right

y/b y/b

(b)

z
b

Left Right
Whole

150 200 500 100
x/b

150 200

Left

Right

Whole

(c) (d )

yEN

b

Figure 12. Vortex trajectories in the wake of the rectangular wing (Run PIV 11). (a) Paths of the
vorticity centroids yΓ of the left and right tip vortices. (b) Paths of the enstrophy centroids yEN of
the left and right tip vortices and the whole wake. (c) Vertical location, z(t), for all paths in (a) and
(b). The dashed line is a fit to zEN(t) for the whole wake for x/b = [0, 110]. (d ) Horizontal location,
y(t), for all paths in (a) and (b).

to the wake symmetry (figures 12b and d ). The nearly vertical paths of the vortices
for the initial one-wing-span descent suggest that the PIV measurements within this
descent region should be free of wall effects due to the tank bottom.

4.2.2. Isovorticity surfaces

One means of visualizing the vorticity data over an entire run is to plot an
isovorticity surface, which is generated by stacking contours of one vorticity level for
an entire run (Chen et al. 1999). Figures 13 and 14 show isovorticity surfaces for
Run PIV 11. There are three isovorticity surfaces of |ω| shown in these two figures:
|ω| = 9.5, 4.75 and 2.85 s−1. These vorticity levels are chosen to be 25%, 12.5%
and 7.5% of the maximum vorticity at x/b = 0. Figure 13 shows a side view of the
isovorticity surfaces, such that the vertical axis in the plot is the z-direction. The cross-
section of the wing displayed in the upper-left corner is intended to orient the reader.
The horizontal axis is the downstream distance, x/b, from the wing. Figure 14 shows
the same three isovorticity surfaces, but from a viewpoint of looking up at the wake
from below. Again, the sketch of the wing in the upper left corner is placed there to
orient the reader to the flow. Note that the vertical and lateral scales of these surfaces
are equal to one another, but that the axial scale has been compressed.
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Figure 13. Side view of the isovorticity surfaces from the rectangular wing (Run PIV 11,
Uo = 500 cm s−1, α = 3◦). The horizontal axis is the downstream distance, x/b, from the wing.
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Figure 14. Bottom view of the isovorticity surfaces from the rectangular wing (Run PIV 11,
Uo = 500 cm s−1, α = 3◦). The horizontal axis is the downstream distance, x/b, from the wing.
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Figure 15. Two-dimensional kinetic energy as a function of downstream location for the
rectangular wing (Run PIV 11). Note that KE = 2.55× 105 cm4 s−2 and x = Uot.

It can be seen in the side-view surfaces that the wake descends at a nearly constant
rate over the entire run. The slight difference in the elevation of the right and left tip
vortices is also evident in this view from 0 < x/b < 75. The weaker counter-rotating
vortex pair from the strut is evident in the side-view surfaces for 0 < x/b < 50.
The bottom view of the surfaces illustrates the initial roll-up of tip vortices. From
0 < x/b < 10, the tip vortices move slightly inboard as the vortex sheet rolls up
from the wing. Another important feature in figure 14 is the lateral positioning of
the wake. Note that there are few, if any, oscillations in the spacing between the tip
vortices. This indicates that there are no visible signs of developing instabilities and,
consequently, the wake is uneventful.

4.2.3. Two-dimensional kinetic energy

The two-dimensional kinetic energy of the wake in Run PIV 11 is shown in figure 15.
Equation (4.7) captures the true kinetic energy since the flow is nearly planar. The
gradual rise and fall of the kinetic energy is due to the fact that the field of view does
not encompass all of wake’s kinetic energy. Therefore, the value of the kinetic energy
depends upon the location of the vortices in the measurement plane. At x/b = 0
and 160, the vortices are at the top and bottom of the camera’s view, so that only a
portion of the kinetic energy is measured. However, at x/b ≈ 50, the vortices are in
the middle of the measurement plane, which results in a maximum value of the kinetic
energy. These trends in the kinetic energy will later be compared with those of the
triangular-flapped wings to highlight the three-dimensional nature of the instabilities.

4.2.4. Vortex strength and structure

The strength, Γo, and size, σ, of the vortices is measured by fitting their circulation
distributions with that of a Lamb–Oseen vortex (equation (4.8)). Figure 16(a) displays
the values of Γo(t) as a function of the downstream distance from the wing. The
circulation of the left vortex remains almost constant after the initial roll-up, while
that of the right vortex experiences a slight decrease at x/b = 160. The vortex core
sizes, rmax = 1.12σ, maximum azimuthal velocities, and peak vorticity values are
shown in figure 16(b–d ). All three of these variables have been computed with
values of σ that have been corrected (§ 4.1) to remove the artificial increase in the
vortex size from aLPT. The maximum azimuthal velocity is normalized by the wake’s
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Figure 16. (a) Circulation, (b) vortex core sizes, (c) maximum azimuthal velocities, and (d ) peak
vorticity values as functions of downstream distance for the rectangular wing (Run PIV 11).
The vortex core sizes, maximum azimuthal velocities, and peak vorticities have been computed
with values of σ that are corrected to remove the artificial inflation by aLPT. Vo = 3.71 cm s−1,
Γo(0)/2πb∗2o = 0.1s−1.

characteristic descent velocity, Vo = Γo(0)/2πb∗o, where Γo(0) is the average circulation
of the left and right vortices at x/b = 0 and b∗o is the initial separation of the left
and right vorticity centroids. The peak vorticity is normalized by the reciprocal of the
wake’s characteristic descent time, 2πb∗2o /Γo(0). The sizes of the right and left vortices
vary only slightly about their average values of 6.4%b and 6.1%b. Because of the
low temporal resolution of the PIV measurements, it is difficult to say if the small
variations of the core sizes are caused by ‘bulges’ travelling through the laser sheet.
The maximum azimuthal velocity and peak vorticity exhibit no measurable signs of
decay over the run.

The PIV data from the wakes of the rectangular wing confirm the observations
that were made previously from the flow visualization data. Namely, that the equal-
strength counter-rotating vortex pairs evolve in a rather steady fashion with no
evidence of bursting or decay. Similar trends were also seen in the wake of another
rectangular wing at lower ReΓ (Chen et al. 1999).

4.3. Triangular-flapped wing

The results of the triangular-flapped wing runs are shown in table 2. The properties
of the wakes prior to the nonlinear effects of the instability were very repeatable.
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Figure 17. Vorticity contours at several downstream locations for Γof/Γot = −0.37 (Run PIV 39,
Uo = 500 cm s−1, α = 2.0◦, 50%c TF). The black contours indicate positive values of vorticity and
grey contours negative values. The same contour levels are used in each of the plots.

However, after the instability occurred, the unsteady, three-dimensional, and dynamic
nature of these wakes quickly becomes evident in the PIV data. Consequently, the
exact details of the flow at larger downstream distances vary from run to run.

4.3.1. Vorticity contours and vortex trajectories

The vorticity contours for a run in which Γof/Γot = −0.37 (Run PIV 39, Uo =
500 cm s−1, α = 2◦, 50%c TF) are shown in figure 17. Negative values of vorticity
are labelled with grey contours and positive values with black contours. The same
contour levels are used in all of the frames. At x/b = 0, the flap and tip vortices
are rolling up from the wing. The ‘comma’-like appearance of the tip vortex is due
to the roll-up of the vortex sheet along the trailing edge of the triangular flap. The
vorticity shed from the strut can also be seen on the left side of the plot from
1.2 < z/b < 1.6. By 18 spans, the counter-rotating pair has orbited counter-clockwise
around its common centroid by about 3π/4 radians. From the flow visualization data,
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Figure 18. (a) Trajectories of the flap and tip vortices and overall centroid for Γof/Γot = −0.37
(Run PIV 39, Uo = 500 cm s−1, α = 2.0◦, 50%c TF). The thick, black line is the overall vorticity
centroid for 0 6 x/b < 38 and the dotted line is the overall vorticity centroid for x/b > 38.
(b) Position of the flap vortex with respect to the tip vortex for 0 6 x/b < 38.

the instability amplitude is finite at this downstream location, yet the vortices in this
particular measurement plane exhibit no evidence of its presence. However, a rapid
change in the vortices’ core sizes occurs at 38 spans (not shown) as the nonlinear
effects of the instability become evident in the measurement plane. At x/b = 54, the
tip vortex splits into two and a vortex ring enters the measurement plane from the
left. This ring collides with the right-side tip vortex at 71 spans, which results in
large patches of vorticity being spread across the field of view. By 125 spans, a few
remnant patches of vorticity remain, although their peak values are significantly less
than those at x/b = 0.

The trajectories of the flap and tip vorticity centroids, as well as the centroid of the
entire wake, are plotted for Run PIV 39 in figure 18(a) for 0 6 x/b 6 243. Initially,
the flap and tip vortices follow curved paths as they orbit outwardly about their
vorticity centroid. The position of the flap vortex with respect to the tip vortex during
this time is shown in figure 18(b). The flap vortex’s position is normalized by the
initial separation distance, do, between the flap and tip vortices, which for this run is
9.82 cm. It is evident that the distance between the vortices remains almost constant.
For other runs, the distance between the flap and tip vortices increases or decreases,
depending on whether or not the light sheet cuts the wake at a peak or trough of
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Figure 19. Vorticity contours at several downstream locations for Γof/Γot = −0.53 (Run PIV 48,
Uo = 500 cm s−1, α = −1.0◦, 50%c TF wing). The black contours indicate positive values of vorticity
and grey contours negative values. The same contour levels are used in each of the plots.

the instability on the flap vortex. While x/b < 38 spans, the wake’s centroid descends
vertically downward. However, as the vortex ring enters the field of view, the position
of the wake’s centroid fluctuates. After the collision of the ring and the tip vortex,
the overall centroid continues its vertical descent.

For larger values of |Γof/Γot|, the vortex dynamics appear somewhat different.

Figure 19 illustrates this in the vorticity contours for a run in which Γof/Γot = −0.53
(Run PIV 48, Uo = 500 cm s−1, α = −1.0◦, 50%c TF). At x/b = 54, the tip vor-
tex divides into smaller pieces and the flap vortex exits the measurement plane.
In the subsequent contour plots, the sinusoidal instability results in an ejection of
the flap vortex and its remnants towards the upper right-hand corner of the con-
tour plots. Notice that there is no exchange of vorticity across the wing centreline.
Instead, the nonlinear effects of the instability are confined to either side of the wake,
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Figure 20. (a) Trajectories of the flap and tip vortices and overall centroid for Γof/Γot = −0.53
(Run PIV 48, Uo = 500 cm s−1, α = −1.0◦, 50%c TF). (b) Position of the flap vortex with respect to
the tip vortex for 0 6 x/b < 38.

which is consistent with the flow visualization measurements discussed in § 3.2.2 (see
figures 8–10).

The vortex trajectories for Γof/Γot = −0.53 (figure 20) also differ from those of

Γof/Γot = −0.37 (Run PIV 39). As expected, the flap and tip vortices trace out circular
arcs with larger radii, which is simply due to the fact that the vortices are more equal
in strength. One interesting result is that the wake has a noticeably reduced descent
velocity after the instability occurs. This phenomenon is mentioned above in the flow
visualization observations (§ 3.2.2). In the flow visualization data, there appeared to
be no distinct downwash in the test section for x/b > 125 (§ 3.2.2). However, because
the dye was so dispersed at these downstream locations, no conclusions could be
drawn from those images. The overall centroid of the wake, which is plotted up to
330 spans downstream of the wing, illustrates this observation. For x/b > 38, the
overall centroid fluctuates greatly at first, but then lingers in the vicinity of the tip
vortex’s final location for the remainder of the run. This behaviour was consistently
observed for the runs that had an angle of attack equal to −1.0◦. Unlike the runs
at α = 2◦, the overall centroid remains in approximately the same location for the
remainder of the run and does not descend out of view. This is not to say that the
wake has stopped descending completely. In fact, a review of the particle-streak data
revealed that there is a small, but finite, amount downwash in the wake at 330 spans
downstream of the wing.
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Figure 21. Side view of the isovorticity surfaces for Run PIV 39 (Uo = 500 cm s−1, α = 2.0◦,
50%c TF, Γof/Γot = −0.37). The horizontal axis is the downstream distance, x/b, from the wing.
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Figure 22. Bottom view of the isovorticity surfaces for Run PIV 39 (Uo = 500 cm s−1, α = 2.0◦,
50%c TF, Γof/Γot = −0.37). The horizontal axis is the downstream distance, x/b, from the wing.
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Figure 23. Side view of the isovorticity surfaces for Run PIV 48 (Uo = 500 cm s−1, α = −1.0◦,
50%c TF, Γof/Γot = −0.53). The horizontal axis is the downstream distance, x/b, from the wing.
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Figure 24. Bottom view of the isovorticity surfaces for Run PIV 48 (Uo = 500 cm s−1, α = −1.0◦,
50%c TF, Γof/Γot = −0.53). The horizontal axis is the downstream distance, x/b, from the wing.
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Run Uo α Γtot.(0) Γof Γ ot KE
PIV Wing (cm s−1) (deg.) (cm2 s−1) (cm2 s−1) (cm2 s−1) ReΓ (cm4 s−2) r̄tmax/b r̄fmax/b

38 50%c TF 500 2 1009 −612 1644 100 900 164 000 0.069 0.039
39 50%c TF 500 2 1018 −607 1640 101 800 169 000 0.068 0.037
40 50%c TF 500 2 1073 −605 1663 107 300 165 000 0.068 0.034

42 50%c TF 500 0 570 −599 1228 57 000 94 500 0.066 0.044
43 50%c TF 500 0 602 −609 1237 60 200 79 200 0.061 0.045
44 50%c TF 500 0 641 −601 1237 64 100 93 000 0.063 0.044

46 50%c TF 500 −1 474 −597 1073 47 400 60 700 0.061 0.050
47 50%c TF 500 −1 549 −594 1053 54 900 65 600 0.060 0.052
48 50%c TF 500 −1 544 −576 1087 54 400 71 800 0.064 0.048

69 50%c TF 300 2 524 −396 980 52 400 70 500 0.071 0.044
70 50%c TF 300 0 335 −439 773 33 500 45 600 0.068 0.050
71 50%c TF 300 −1 239 −444 663 23 900 24 600 0.069 0.056

50 75%c TF 500 2 1051 −689 1705 105 100 150 000 0.069 0.036
52 75%c TF 500 2 1035 −699 1715 103 500 144 000 0.068 0.039
53 75%c TF 500 2 1019 −698 1719 101 900 133 000 0.071 0.039

55 75%c TF 500 0 670 −653 1276 67 000 107 000 0.063 0.042
56 75%c TF 500 0 652 −655 1306 65 200 97 000 0.063 0.040
57 75%c TF 500 0 620 −629 1266 62 000 82 100 0.061 0.040

59 75%c TF 500 −1 463 −649 1085 46 300 56 400 0.063 0.050
60 75%c TF 500 −1 490 −642 1114 49 000 60 500 0.064 0.053
61 75%c TF 500 −1 447 −650 1122 44 700 55 300 0.068 0.048

64 75%c TF 300 0 359 −453 796 35 900 32 000 0.068 0.050
65 75%c TF 300 −1 271 −408 655 27 100 22 200 0.066 0.063
66 75%c TF 300 2 591 −454 1012 59 100 72 500 0.071 0.045

Table 2. PIV run parameters for the triangular-flapped wings: 50%c TF wing; 75%c TF wing:
Γtot.(0), initial, total circulation; Γof , average flap circulation; and Γot, average tip circulation. For
other definitions see table 1.

4.3.2. Isovorticity surfaces

The isovorticity surfaces for Run PIV 39 (Uo = 500 cm s−1, α = 2.0◦, 50%c TF,
Γof/Γot = −0.37) are shown in figures 21 and 22. The surfaces are shown for
|ω| = 9.75, 4.88, and 2.93 s−1, which correspond to 25%, 12.5%, and 7.5% of the
maximum vorticity of the flap vortex at x/b = 0. Figure 21 shows a side view of
these surfaces, while figure 22 shows the bottom view. The side view of the surfaces is
taken from the vantage point located at the wing centreline and looking outboard to
the triangular flap. Consequently, the flap vortex in figure 21 is initially closest to the
viewer. The dashed line at x/b = 38 is the downstream distance at which the vortices
exhibit a sudden change in their internal structure. Unlike the isovorticity surfaces
for the rectangular wing (figures 13 and 14), the surfaces in the wake of the 50%c
TF wing are highly unsteady and are characterized by large changes in the vorticity
distribution. It is important to comment on how these figures are interpreted. If these
two-dimensional data were the only information available about the wake, it would be
nearly impossible to imagine that the flap vortices are undergoing a sinuous instability,
which leads to the formation of vortex loops and rings. This clearly underscores the
importance of the flow visualization data in this study. Therefore, the discussions in
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Figure 25. Various trends in the total circulation data. (a) Run PIV 55 (75%c TF, Γof/Γot = −0.51).

(b) Run PIV 56 (75%c TF, Γof/Γot = −0.50). (c) Run PIV 70 (50%c TF, Γof/Γot = −0.57). The
vertical dashed lines denote the downstream distances at which the flap and tip vortices undergo a
rapid change in their structure.

the following paragraphs are based upon both the PIV data and the flow visualization
results.

For x/b < 38, the surfaces of the counter-rotating vortex pair are fairly smooth,
indicating that the vorticity distribution is not varying significantly. At x/b = 38, the
flap vortex seems to disappear from view. The reason for this is that the instability
amplitude on the flap vortex has become finite, causing the flap vortex to tilt out
of the measurement plane. Consequently, the PIV data no longer capture the flap
vortex. Note that for x/b > 38, the isovorticity surfaces are no longer smooth,
but are characterized by high-frequency events, demonstrating the unsteady, three-
dimensional nature of the wake. At x/b ≈ 50, the vortex ring from the opposite side of
the wake enters the field of view and eventually collides with the remnant tip vortex.
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Figure 26. Two-dimensional kinetic energy as a function of downstream distance for the 50%c TF
wing at small and large values of |Γof/Γot|: (a) Γof/Γot = −0.37, KE = 1.64 × 105 cm4 s−2 (Run

PIV 38, Uo = 500 cm s−1, α = 2.0◦) (b) Γof/Γot = −0.56 KE = 6.6 × 104 cm4 s−2 (Run PIV 47,
Uo = 500 cm s−1, α = −1.0◦). The vertical dashed lines denote the downstream distance at which
the flap and tip vortices undergo a rapid change in their core structures.

The details of this collision are quite interesting, as shown in figure 21. For this slice
of the wake, the vortex ring is swept under the tip vortex and ejected upward out of
the measurement plane. The top portion of the vortex ring interacts strongly with the
tip vortex. The effects of this collision cause the formation of small-scale structures,
which orbit about the tip vortex and give rise to the helical shapes in the |ω| = 2.93
and 4.88 s−1 surfaces. The side view of the isovorticity surfaces demonstrates that for
the remainder of the run, the wake, though highly disrupted, continues to descend in
the test section.

The isovorticity surfaces for Run PIV 48 (Uo = 500 cm s−1, α = −1.0◦, 50%c TF,
Γof/Γot = −0.53), which has a larger value of |Γof/Γot|, are shown in figures 23
and 24. Again, these surface values correspond to 25%, 12.5% and 7.5% of the
maximum vorticity of the flap vortex at x/b = 0. Note that the horizontal scale for
Run PIV 48 is different than that of Run PIV 39. The dashed line at x/b = 38
denotes the downstream distance at which a sudden change is seen in the vortices’
internal structure. For x/b > 38, the tip vortex becomes shrouded with a cloud of
small-scale structures as the nonlinear effects of the instability propagate through the
measurement plane. As discussed § 4.3.1, the sinusoidal instability on the flap vortex
leads to the ejection of the flap vortex from the field of view at x/b ≈ 75.

One of the more noticeable features in figures 23 and 24 is the reduction of the
vorticity magnitude. For x/b > 150, the vorticity magnitude drops below a value
of 8.25 s−1. Furthermore, for x/b > 200, only a few small patches of vorticity have
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Figure 27. Contours of the two-dimensional kinetic energy for Γof/Γot = −0.37 (Run PIV 38,
Uo = 500 cm s−1, α = 2.0◦, 50%c TF). The same contour levels are used in each of the plots.

magnitudes equal to 4.13 s−1. The descent characteristics of Run PIV 48 can also
be seen in the side view of the isovorticity surfaces. The data in figure 23 show the
reduced descent velocity of the wake after the instability has occurred. By 330 spans,
the few remnant patches of the tip vortex are only slightly below the depth of the tip
vortex at x/b = 100.

4.3.3. Circulation budget

After viewing the flow visualization and isovorticity surface data of the counter-
rotating pairs, one question that arises is whether or not the circulation is conserved
in the PIV measurement plane. For the case of the rectangular wing, the answer is
a straightforward yes. The vortices behave nearly two-dimensionally. The PIV mea-
surement plane intersects the vortices almost orthogonally. When the circulations for
each tip vortex are calculated in figure 16(a), the integration region in equation (4.1)
is sufficiently large that no appreciable vorticity is present at or near the boundaries.
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Figure 28. Contours of the two-dimensional kinetic energy for Γof/Γot = −0.56 (Run PIV 47,
Uo = 500 cm s−1, α = −1.0◦, 50%c TF). The same contour levels are used in each of the plots.

There is no exchange of vorticity between the two sides of the wing. The vortex cores
do not show any sign of significant growth to spread vorticity. Essentially, the integra-
tion is equivalent to the determination of circulation using a closed material contour
that is sufficiently far away from vortical regions as required by the Kelvin circulation
theorem (Saffman 1992). Therefore, within experimental uncertainty, circulation of
each vortex remains constant as seen in figure 16(a).

The situation is quite different in the wakes of the flapped wings where the
instability develops, grows, and alters the wake vortex filament topology. For some
runs, the circulation in the PIV measurement plane does remain relatively constant
and in others it changes radically. The reason for this behaviour is that the PIV
plane is fixed. The instabilities, as nearly as we can observe, are also fixed in the
laboratory reference frame. The relative position of the PIV plane with respect to an
instability wave cycle, however, is arbitrary. This is due to the random starting point
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of the carriage during towing, variations in growth rates and other factors that differ
among the experimental runs. The PIV measurement plane can no longer serve as
a surrogate for a closed material contour enveloping a vortex filament. Vorticity is
exchanged between the two halves of the wing. Flow visualization pictures show the
distinct change in the topology of the vortex filaments. They undulate, twist, connect
and reconnect radically. It is even conceivable that a filament can bend without
connection or reconnection and make multiple entries into the PIV measurement
plane, even though none has been observed here. Hence, depending on where the
PIV measurement plane intersects an instability cycle, the total circulation in the PIV
plane can show seemingly unpredictable, even impossible behaviour. In such cases, a
knowledge of the three-dimensional behaviour is necessary for correct interpretation.

Three examples are shown in figure 25. Figure 25(a) for Run PIV 55 (Uo=500 cm s−1,
α = 0◦, 75%c TF, Γof/Γot = −0.51) shows a case where the total circulation remains
nearly constant. The dashed line at x/b = 36 denotes the downstream location at
which a sudden change occurs in the vortices’ core structures. It is evident that the
circulation decreases a small amount after 36 spans, though in general the circulation
varies only slightly about its initial value of 670 cm2 s−1. This is comparable to the
flow visualized in figures 9 and 10 where there is no evidence of vorticity exchange
between the opposite sides of the wing and all vortical activity that begins in the PIV
plane remains there.

The circulation can fluctuate strongly for some other runs, such as that shown in
figure 25(b) for Run PIV 56 (Uo = 500 cm s−1, α = 0◦, 75%c TF, Γof/Γot = −0.50).
Although the wing speed and angle of attack are identical to those of Run PIV 55,
the trends in the circulation plot are completely different. At 75 spans, the circulation
abruptly decreases by approximately 70%, which might give the impression that the
circulation in the wake is suddenly decaying. However, this is not the case. The
reason for the rapid ‘decay’ in the wake’s circulation is that the measurement plane
does not contain all of the wake’s vorticity. As the flap and tip vortices on both
sides of the wake undergo their cooperative instabilities, vortex loops and rings
enter and exit the field of view, causing the measured circulation to vary strongly.
In this particular run, a vortex ring, which originates from the left flap vortex,
enters the top of the measurement plane so that only the ‘negative’ portion of the
ring is imaged. Consequently, the ‘total’ circulation plummets due to this additional
negative vorticity. Notice that the circulation drops by a value comparable to the
flap’s circulation (table 2). From 75 to 150 spans, the circulation steadily increases
as the ‘positive’ portion of the vortex ring enters the field of view and cancels its
‘negative’ vorticity. By 150 spans, the circulation returns to a value close to that at
x/b = 0. Over the rest of the run, the circulation decreases more slowly as more and
more of the vorticity is ejected from the field of view.

Another example of a wake in which the circulation in the measurement plane
is not constant is shown in figure 25(c) for Run PIV 70 (Uo = 500 cm s−1,
α = 0◦, 50%c TF, Γof/Γot = −0.57). The measurement plane for this run inter-
sects the flap’s sinusoidal instability at a local peak, such that the observed distance
between the flap and tip vortices increases as the instability evolves. Eventually, the
instability amplitude grows so large that the flap vortex exits the field of view at
44 spans, resulting in an increase in ‘total’ circulation. By 75 spans, the flap vortex
and its remnants re-enter the measurement plane and the circulation decreases to
a value comparable to that at x/b = 0. For the remainder of the run, no vortex
rings enter or exit the measurement plane and the circulation remains relatively
constant.
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Figure 29. Circulation of the flap and tip vortices as a functions of orbit angle, θ, prior to the
nonlinear effects of the instability for Run PIV 46 (Uo = 500 cm s−1, α = −1.0◦, 50%c TF).

From these widely varying trends in the circulation data, it is difficult to conclude
whether or not the flow is behaving inviscidly as the instability progresses. Viscous
effects are certainly occurring in the vortex reconnection and collision processes, but
given the large ReΓ of these vortices, the viscous effects are too small to be a dominant
factor in the evolution of these wakes. One trend evident over the entirety of some
runs (Run PIV 55) or portions of others (Run PIV 70 for 75 6 x/b 6 170) is that if no
vorticity enters or exits the measurement plane, the circulation stays about constant,
as dictated by Helmholtz’s laws of vortex motion. These observations underscore the
necessity of three-dimensional information for correct physical interpretation.

4.3.4. Two-dimensional kinetic energy of the wake

Perhaps one of the more interesting integral quantities measured in the wakes of the
triangular-flapped wings is the two-dimensional kinetic energy KE in equation (4.7).
In § 4.2.3, it was shown that this quantity changes relatively slowly in the wake
of the rectangular wing (figure 15). However, given the highly three-dimensional
wake of the triangular-flapped wings, we expect that KE will vary strongly with
downstream distance. Indeed, this is the case as figure 26(a) illustrates for Run PIV
38 (Uo = 500 cm s−1, α = 2.0◦, 50%c TF, Γof/Γot = −0.37). Prior to about 35 spans
(vertical dashed line), KE changes only slightly as the counter-rotating pair traverses
the first three-quarters of its orbit period. Although the flow visualization shows that
the instability becomes finite at about 25 spans, the kinetic energy does not give an
obvious indication of its presence at that downstream location. However, at about 35
spans, KE decreases by about 30% as the flap vortex is tilted in the measurement
plane by the instability. Consequently, the planar PIV measurements can no longer
capture the flap vortex’s true kinetic energy. Therefore, the drop in KE is primarily
due to the tilting of the flap vortex. Further decrease in KE is, perhaps, due to either
a disruption of the tip vortex’s coherence or a slight tilting of the tip vortex in the
field of view. At approximately 50 spans, a vortex ring enters the measurement plane
from the opposite side of the wake and impacts the tip vortex. Over the rest of the
run, the wake’s kinetic energy continues to decay slowly.

To illustrate the distribution of KE in the wake, figure 27 shows contours of kinetic
energy for Run PIV 38 (Uo = 500 cm s−1, α = 2.0◦, 50%c TF). The same contour levels
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Figure 30. (a) Vortex core size, (b) maximum azimuthal velocity, and (c) peak vorticity of the flap
and tip vortices as a function of orbit angle, θ, for Run PIV 46 (Uo = 500 cm s−1, α = −1.0◦, 50%c
TF). Note that these plots are based upon values of the vortex core size, σ, that have been corrected
to remove the artificial inflation from aLPT. Vo = 1.23 cm s−1, Γo(0)/2πb2

o = 0.2 s−1.

are used in all of the plots. As the vortices roll up at x/b = 0, the kinetic energy has
a compact distribution around the counter-rotating pair. At 54 spans, a vortex ring
enters from the opposite side of the wake and the kinetic energy associated with it is
visible on the left side of the contour plot. The vortex ring begins to collide with the
remnants of the tip vortex at 71 spans, which subsequently spreads the kinetic energy
over a large region of the measurement plane. For larger downstream locations, the
peak values in the kinetic energy are markedly lower than those in the contour plots
prior to 36 spans.
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For larger values of |Γof/Γot|, the trends in two-dimensional kinetic energy are some-
what different than those described above, regardless of Rec. Figure 26(b) demon-
strates this for a run in which Γof/Γot = −0.56 (Run PIV 47, Uo = 500 cm s−1,
α = −1.0◦, 50%c TF). One immediate difference between the kinetic energy of runs
38 and 47 is that the kinetic energy in Run PIV 47 experiences a larger relative
drop when the instability becomes evident at 40 spans. Before 40 spans, the flap
vortex makes up about 20% of the flow’s kinetic energy. However, the total kinetic
energy decreases by approximately 70%, not 20%. Consequently, the drop in kinetic
energy is not just due to the tilting of the flap vortex in the measurement plane.
The additional decrease in the kinetic energy arises from the tilting and disruption of
the tip vortex. This tilting is visible in the flow visualization data for the right-hand
tip vortex in figure 10 at x/b = 50. Over the rest of the run, the kinetic energy in
figure 26(b) does not decrease as much as it does in Run PIV 38. Rather, the value
of the kinetic energy at 100 spans is close to its final value at 326 spans. Figure 28
displays contours of two-dimensional kinetic energy for Run PIV 47. Initially, the
distribution of kinetic energy appears similar to that of Run PIV 38. However, as the
instability progresses, less and less of the two-dimensional kinetic energy is present
in the field of view. By 125 spans, the contour plot displays only a patch of kinetic
energy, which is noticeably smaller than that of Run PIV 38 at the same downstream
location.

The trends in KE described above are consistently observed in the PIV data for
both the 50%c and 75%c triangular-flapped wings. When the instability first becomes
evident in the measurement plane, the two-dimensional kinetic energy always drops by
a significant amount, regardless of Γof/Γot. However, the residual decay of the kinetic

energy does depend on Γof/Γot. For larger values of |Γof/Γot|, the kinetic energy does
not decrease appreciably after its initial drop, as was shown above for Run PIV 47 in
figure 26(b). Alternatively, for runs in which |Γof/Γot| is relatively small, like Run PIV
38, the kinetic energy continues to decay. There are a few reasons for this difference
in decay characteristics. First, for the runs that have smaller values of |Γof/Γot|, the
instability leads to an exchange of vorticity from opposite sides of the wake. As the
instability evolves, the flap vortices form coherent Ω-loops. The vortex rings that
form from these loops have cross-sections that are coherent and comparable in size
to the original flap vortices. Although these rings are three-dimensional in nature,
they contribute considerably to the two-dimensional kinetic energy calculation in
equation (4.7). Therefore, when they cross the wing centreline, the rings contribute to
the total kinetic energy. As these rings collide and interact with the tip vortices, the
flow becomes increasingly three-dimensional and the two-dimensional kinetic energy
slowly decays. For larger values of |Γof/Γot|, the nonlinear behaviour of the instability
is confined to the opposite sides of the wake and there is little exchange vorticity
across the wing centreline.

The second reason is due to the relative strengths of the flap and tip vortices.
For runs in which |Γof/Γot| is small, the initial behaviour of the instability does not
significantly affect the tip vortex simply because it is much stronger than the flap
vortex. As the flap vortex forms Ω-loops that pinch off into rings, the tip vortex
does not tilt significantly in the measurement plane. This is evident in the flow
visualization images in figures 5 (x/b = 28, 32) and 6 (x/b = 25, 36) for a run in
which Γof/Γot = −0.37. As a result, a considerable amount of KE due to the tip
vortex remains in the field of view. This nearly two-dimensional flow slowly becomes
more three-dimensional over the rest of the run for the reasons explained above.
However, for runs in which |Γof/Γot| is relatively large, the initial nonlinear behaviour
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affects not only the two-dimensional kinetic energy of the flap vortex, but also that
of the tip vortex. Since the two vortices are more comparable in strength, the finite-
amplitude perturbations tilt and disrupt both the flap and tip vortices, causing a large
drop in the wake’s two-dimensional kinetic energy. The flow is so three-dimensional
over the rest of the run that the two-dimensional kinetic energy remains at a small
fraction of its initial value.

4.3.5. Vortex structure

The structure and behaviour of the individual flap and tip vortices are analysed in a
manner similar to that of the rectangular wing. Consider Run PIV 46 (Uo = 500 cm s−1,
α = −1.0◦, 50%c TF) in which Γof/Γot = −0.56. The circulations of the flap and tip
vortices are plotted in figure 29 against the orbit angle θ over the first half of the orbit
period, corresponding to the first 40 spans downstream of the wing. The orbit angle
θ of the vortex pair is measured counter-clockwise from the plane of the wing. For
θ > π, the wake displays three-dimensional behaviour and the individual vortices are
no longer examined. Unlike the rectangular wing’s tip vortices, which have relatively
constant circulation strengths, the flap and tip vortices from the triangular-flapped
wing have circulation strengths that decrease rather quickly. However, during this
same period, the sum of the flap and tip circulations remains relatively constant.
This leads to the conclusion that equal amounts of positive and negative vorticity are
cancelling along the interface of these two vortices. Similar trends are observed in
other runs that also have relatively large values of |Γof/Γot|.

The vortex core size, maximum azimuthal velocity, and peak vorticity of the flap and
tip vortices versus θ are shown in figure 30 for Run PIV 46. Note that the variables,
rmax, uθmax and ωmax, have been computed with values of σ that are corrected to remove
the artificial increase in the vortex size from aLPT. One interesting observation is the
evidence for stretching and tilting of the flap vortex. The flow visualization data at
this angle of attack and wing speed reveal that the perturbation on the flap vortex
becomes finite by θ ≈ π/2 radians, causing the flap vortices to stretch and tilt. These
three-dimensional effects are strongly evident in all three plots for the flap vortex,
which demonstrates a large-amplitude oscillation in rmax, uθmax and ωmax at θ ≈ π/2
radians.

4.3.6. Enstrophy dispersion

Since the wakes of the flapped wings contain both positive and negative axial vor-
ticity on each half of the wakes, the use of vorticity in quantifying its dispersion causes
difficulties as indicated in § 4.1. Instead, we use the enstrophy distribution ω2(y, z, t) to
gauge the dispersion of vorticity. Figure 31 shows the behaviour of the total enstrophy
EN for Runs 39 and 48 during the development of instabilities as determined using
equations (4.3), (4.4) and (4.6). The total enstrophy in figure 31(a) stays nearly con-
stant before the instabilities set in and render the field three-dimensional. It is nearly
constant so long as the vortices in a pair mimic two-dimensional vortices (x/b ∼ 35
in figures 17 and 19). As the instabilities set in, EN drops abruptly, especially for Run
39 for which the effect of the instability is most profound, as seen in figures 4 and 5.
Once the instabilities change the flow field from a nearly two-dimensional one into a
three-dimensional one, no definitive statements can be made about the behaviour of
EN: both for the whole wake and for the two half-wakes of the rectangular wing (Run
11, not shown) It remains nearly constant since the wake is nearly two-dimensional
(see figures 3 and 12). The enstrophy dispersion radius rEN defined in equation (4.6)
is used as a measure of the dispersion of vorticity in the vortex wakes during the
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Figure 31. The behaviour of total enstrophy EN on one side of the wing during the development
of instabilities for Runs PIV 39 and 48: (a) total enstrophy, EN(t), (b) enstrophy dispersion radius,
rEN , (c) the centroids yEN(t), and (d ) trajectories of enstrophy centroids (yEN(t), zEN(t)).

development of the instabilities. This quantity has the advantage that it does not rely
upon fitting a particular analytical model to the circulation distribution, a feature
that proves useful when the wake exhibits highly three-dimensional characteristics. As
noted earlier, the use of the vorticity dispersion radius defined in equation (4.5) is in-
appropriate since opposite-signed vorticity patches are present in the flow. The results
for Runs 39 and 48 are shown in figure 31(b). As expected, rEN remains constant until
the instabilities develop, after which it increases rapidly. The curve for Run 38 shows
oscillations which are associated with exchange of substantial amounts of vorticity in
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Figure 32. Enstrophy dispersion radii rEN during the development of instabilities for Runs PIV 38,
39, 47, 48 and 56 as a function of downstream distance. The vertical dashed line at x/b = 40 marks
the approximate downstream location where the flap and tip vortices undergo a rapid change in
their core structures. The results for the rectangular wing are also shown for reference: the whole
wake (rEN ≈ 0.5) and the two halves (rEN ≈ 0.10) are shown for Run 11.

the form of rings between the two halves of the wake; rEN reaches a constant value
of about b/2, suggesting that the vorticity has spread and completely filled the wake
of the wing, leaving no more room for further spreading, as corroborated by the flow
visualization pictures and vorticity contours. The paths for the enstrophy centroids,
(yEN, zEN), are shown in figure 31(c, d ). In contrast to the uneventful, almost vertical
descent of the wing tip vortices in the wake of the rectangular wing (figure 12),
the enstrophy centroids of the flapped wings exhibit seemingly erratic behaviour,
following typical cycloids before the instabilities set in. The wake for Run 39 starts
to descend and later makes a sharp upwards turn, probably due to vortex patches
entering and exiting the data frame. The wake for Run 48, however, seems to hover
at a fixed location.

The enstrophy dispersion radius rEN varies strongly as a function of downstream
distance. Figure 32 illustrates this for all the sample runs in the figures of this paper
(Uo = 500 cm s−1). The vertical dashed line at x/b = 40 indicates the approximate
downstream distance about which the flap and tip vortices display a sudden change
in their structures. Before this change, rEN remains relatively low for all flows, and
even constant for some; an expected observation since the initial wake behaviour,
hence the spread of vorticity, is determined by the geometric characteristics of the
generating wing. The average core sizes of the flap and tip vortices are 0.04b and
0.063b (table 2) from 0 6 x/b 6 40. Since the initial vortices are concentrated, rEN
is essentially one-half of their separation. Figure 32 indicates a value around 0.14b.
Once the instabilities in the wake undergo severe changes, the total enstrophy as
well as its trajectory undergo chaotic changes (see also figure 31). The enstrophy
dispersion radius rEN exhibits similar behaviour. In some cases, large oscillations are
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Run FV Run(s) PIV ReΓ Γ of/Γ ot b∗o/b σt/b
∗
o σf/b

∗
o do/b

∗
o λl/b λr/b

1 38–40 103 300 −0.37 1.22 0.050 0.027 0.198 0.9 1.3
2 42–44 60 400 −0.49 1.46 0.039 0.027 0.154 0.9 1.2
3 46–48 52 200 −0.55 1.47 0.038 0.030 0.147 1.1 1.5
4 69 52 400 −0.40 1.63 0.039 0.024 0.144 0.7 0.9
5 70 33 500 −0.57 1.60 0.038 0.028 0.146 1.5 1.3
6 71 23 900 −0.67 1.79 0.035 0.028 0.127 2.3 1.8
7 38–40 103 300 −0.37 1.22 0.050 0.027 0.198 1.1 1.2
8 69 52 400 −0.40 1.63 0.039 0.024 0.144 0.8 0.8
9 42–44 60 400 −0.49 1.46 0.039 0.027 0.154 1.0 1.4

10 70 33 500 −0.57 1.60 0.038 0.028 0.146 1.0 1.0
11 50, 52, 53 103 500 −0.41 1.21 0.051 0.028 0.198 1.0 1.4
12 66 59 100 −0.45 1.37 0.046 0.029 0.152 1.0 1.2
13 55–57 64 700 −0.50 1.37 0.041 0.027 0.161 1.2 1.0
14 64 35 900 −0.57 1.64 0.037 0.027 0.145 1.1 —
15 59–61 46 700 −0.58 1.46 0.040 0.031 0.148 — 1.5
16 — — — — — — — — —
17 50, 52, 53 103 500 −0.41 1.21 0.051 0.028 0.198 0.9 1.0
18 66 59 100 −0.45 1.37 0.046 0.029 0.152 1.1 1.0
19 55–57 64 700 −0.50 1.37 0.041 0.027 0.161 1.2 1.3
20 64 35 900 −0.57 1.64 0.037 0.027 0.145 1.0 1.3

Table 3. Experimental instability wavelengths. Run FV is the flow visualization run number and
Run PIV is the corresponding PIV run number. ReΓ , average circulated-based Reynolds number
from the PIV measurements; Γof/Γ ot, average ratio of the flap circulation to the tip circulation
from the PIV measurements; b∗o/b, average, initial distance between the vorticity centroids on either
side of the wake; σt/b

∗
o, average, dimensionless tip vortex size; σf/b

∗
o, average dimensionless flap

vortex size; do, average, initial separation distance of the flap and tip vortices; b = 40 cm, span of
the wing; λl/b, average instability wavelength on the left-side flap vortex; λr/b, average instability
wavelength on the right-side flap vortex.

visible (Run 38, for example). For example, as mentioned in the previous discussion of
Run PIV 56 (§ 4.3.3), a vortex ring from the opposite side of the wake enters the top
of the measurement plane at x/b = 75, such that a surge in enstrophy is registered.
Eventually, however, rEN settles at around b/2, apparently a limiting value, since the
other half of the vortex wake is undergoing the same processes. The rEN for the two
halves as well as the whole wake of the rectangular wing (Run 11) are also shown
in the figure. The rEN for the half-wakes remains nearly constant at about 0.1b since
the wake is essentially two-dimensional. The rEN for the total wake of the rectangular
wing is about 0.5b since the wake is composed of two concentrated vortices which
are nominally a wing span apart (see, for example, figure 12). The slight increase in
rEN at later times is consistent with probable wall effects due the bottom of the tank.
As the wake approaches the bottom, it slows down and the vortices start moving
sideways as seen in figure 12.

The PIV data for the triangular-flapped wings provide a quantitative assessment
of the counter-rotating pairs as they evolve in time. From the flow visualization data
alone, it was previously difficult to draw firm conclusions about the wakes at large
downstream distances because of the dispersal of dye from the vortices. Now, however,
questions about the wakes, such as their location, descent properties, kinetic energy,
structure, and resulting distribution of vorticity, have been better analysed. In the
following section, the instability wavelengths are measured from the flow visualization
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data. In Bristol et al. (2002a), these wavelengths are compared with the results of
linear stability analyses and numerical simulations.

5. Observed instability wavelengths
As discussed in § 3, there are two orthogonal views (y, z) of the test section that

can be used to take the wavelength measurements from the flow visualization data.
Unfortunately, each of these views has a drawback when calculating the unstable
wavelengths. Although the side view provides good detail of the instability evolution,
it is too close to the test section to measure several wavelengths. The overhead
vantage point provides a wide field of view of the test section, but the surface
waves from the strut initially distort the appearance of the dye trails. Considering
each of these shortcomings, the overhead view is chosen since it typically yields
the better measurements of the instability wavelengths. It is necessary, however,
to not make measurements while the surfaces waves alter the flow visualization
images. In this field of view, the spatial resolution of the flow is 0.26 cm/pixel
or 0.007b/pixel. Another aspect of these wavelength measurements that requires
discussion is the manner in which the peaks and troughs are identified. Due to the
complexity of the flows, it is difficult to automate the peak and trough location process.
Consequently, they are manually measured, which introduces some subjectivity. For
the runs at α = 2.0◦, the peaks and troughs are clearly identifiable. Yet, for the runs
at −1.0◦, less dye is entrained into the vortices, making it difficult to take wavelength
measurements. In these cases, it is sometimes necessary to make an educated guess as
to the instability wavelength. The instability wavelengths are measured over several
downstream locations from the moment they are first observed until the moment the
flap and tip vortices make contact with one another. Because the perturbations are
finite in size when the instability is measured, a direct comparison with the results of
the linear stability theory in Bristol et al. (2002a), which assumes that the perturbations
are infinitesimal, is difficult. However, it is assumed that the most linearly unstable
mode will give rise to finite-size perturbations of the same wavelength, allowing an
indirect comparison to be made. On average, the standard deviation of the measured
wavelengths is approximately 0.15b, which is noticeably greater than the spatial
resolution of the flow. The reason for this is that the instability wavelengths for each
of the counter-rotating vortex pairs vary somewhat over the length of the test section.
As the theoretical analyses in Bristol et al. (2002a) depend critically on the vortex
core size, the values of σ were corrected to remove the artificial inflation due to aLPT.

The separation distance, do, between the flap and tip vortices is taken from PIV
measurements immediately after the wing passes through the light sheet. The PIV
measurements are performed on only the right-hand side of the wake, so that the
left-hand side pair’s separation distance and core sizes are not known. While not
exact, it is assumed that the vortices on the left-hand side have the same separation
distance and core sizes as those on the right-hand side. Additionally, the distance, b∗o,
between the vorticity centroids in each half of the wake is computed by multiplying
the distance from the right-hand centroid to the wing centreline by two.

The experimental instability wavelengths, separation distances, core sizes, and rela-
tive circulation strengths are summarized in table 3. Note that the results for a few of
the runs are not shown in table 3 because the dye trails are too faint for wavelength
measurements to be made. The variables, λl/b and λr/b, are the average instability
wavelengths on the left- and right-hand side flap vortices. It is immediately apparent
from table 3 that for the majority of the runs, the observed wavelengths are not equal
on either side of the wake. These differences are probably due to small asymmetries
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in the wings’ construction, leading to variations in the measured wavelengths. For
example, consider the top view of Run FV 1, which is shown in figure 6. It can be seen
that the indicated left-hand side wavelength is distinctly shorter than that indicated
on the right-hand side.

It should be noted that for most of the runs, the average experimental wavelengths
are on the order of one span or four times the separation distance of the flap and tip
vortices. This observation is consistent with the linear stability analyses in Bristol et
al. (2002a), which show that unequal-strength counter-rotating vortex pairs are most
unstable at disturbance wavelengths shorter than that of the classical Crow instability.
As the value of Γ increase from −1 to 0, the most unstable wavelength decreases
for a particular vortex pair. In Bristol et al. (2002a), the measured wavelengths in
table 3 are shown to agree favourably with those predicted by two- and four-vortex
linear stability analyses, demonstrating that the analytical models are capturing the
essential physics of the instability. Furthermore, the four-vortex calculations show
that the most unstable mode is driven primarily by the instability of the individual
vortex pairs. The recent calculations of Fabre, Cossu & Jacquin (2002) have shown
remarkable agreement with our observations. In search of optimum perturbations
for the growth of instabilities in a four-vortex wakes, they determine the optimum
wavelength to be about λ/b ≈ 2π/7 = 0.9 for Γ = −0.37, which is in close agreement
with the results in table 3, the variance being within the experimental uncertainty.

6. Closing remarks
Through the vortex wakes of triangular-flapped wings, the stability characteristics

and nonlinear evolution of unequal-strength counter-rotating vortex pairs have been
studied in a towing tank. These pairs undergo a sinuous instability within 15–20 spans
downstream of the triangular-flapped wings. The observed instability wavelengths are
typically shorter than that of the classical Crow instability for an equal-strength
counter-rotating pair. Furthermore, the flow visualization data illustrate how the
nonlinear three-dimensional evolution of the instability varies as the relative strengths
of the flap and tip vortices are changed. For smaller values of |Γof/Γot|, there is a
large exchange of vorticity across the wing centreline. However, for larger values of
|Γof/Γot|, the nonlinear vortex interactions remain confined on either side of the wake.
The amplification rate of the instability and the orbital rotation rate of a flap-tip
vortex pair determine the ejection direction of the vortex rings that form from the
evolution of the instability. Using PIV, it is shown that the two-dimensional kinetic
energy rapidly drops as the instability becomes finite in amplitude and transforms
the two-dimensional nature of the wake into a three-dimensional one. Due to the
limited region of the two-dimensional PIV measurements, the total circulation of the
counter-rotating pairs is often observed to vary in time as patches of vorticity enter
and exit the measurement plane.

The experiments presented here are performed under condition mimicking a quiet
unbounded environment. At the beginning of § 4, the background velocity field
was briefly described. The effect of the finite size of the tank was discussed with
reference to figure 12. Also mentioned is the slight side-slippage of the individual
vortex trajectories, which may be partly due to large-scale circulation present in
the tank and possible asymmetries in wing construction. No attempt was made to
systematically explore the effects of the environment on the development of the
instabilities discussed here. We do know from observations of airplane wakes in the
atmosphere, for example, that the behaviour of the individual vortices as well as
interactions among them depend strongly on the state of the background flow field
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(Spalart 1996, 1998). Vortex trajectories and strengths strongly depend on background
stratification and shear. The background turbulence, both in intensity and scale, has
strong influence on the decay of the vortex strength. It seems also very likely that the
scale of the background motion will have an effect of the selection of the instability
modes. Further, the strength of the background shear will have an influence on the
amplification rate of the instabilities. However, each of these effects is complicated
enough to warrant separate research, and hence has not been addressed systematically
during the course of the experiments described here.

The initial linear instability and the eventual nonlinear dynamics of the vortex
filament are observed to be stationary in the laboratory coordinate system. No
preferential motion either toward or away from the moving wing is noticeable. When
the events are observed from the reference frame of the wing, the originator of the
disturbances, they look as if they are being convected away from the wing with the
towing speed. In this reference frame and within the convention of stability analysis,
the instability is said to be convective (Drazin & Reid 1981; Huerre & Monkewitz
1990; Fabre et al . 2000). There is still the possibility that these instabilities are excited
by the background broadband disturbances, in which case one might argue that
the instabilities are absolute since they are stationary in that reference frame. This
possibility is rather remote since several of the experimental runs are made after
the tank has been left undisturbed for several days. This distinction, however, is not
essential for the discussion in this paper.

In a companion paper, Bristol et al. (2002a) discuss the physical mechanisms
that cause the instability between unequal-strength counter-rotating vortex pairs.
Additionally, a comparison of the observed wavelengths in § 5 will be made with the
results of linear stability analyses and numerical simulations. Finally, from a practical
standpoint, the wake alleviation properties of this instability are assessed in Ortega
et al. (2002) by comparing the rolling moment and downwash in the wakes of the
rectangular and triangular-flapped wings.

R. L. Bristol and J. M. Ortega were recipients of National Science Foundation
Graduate Fellowships.
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